
3
D o T h i n g s :

A C l o j u r e C r a s h C o u r s e

It’s time to learn how to actually do things
with Clojure! Hot damn! Although you’ve

undoubtedly heard of Clojure’s awesome
concurrency support and other stupendous fea-

tures, Clojure’s most salient characteristic is that it is a
Lisp. In this chapter, you’ll explore the elements that
compose this Lisp core: syntax, functions, and data.
Together they will give you a solid foundation for rep-
resenting and solving problems in Clojure.

After laying this groundwork, you will be able to write some super
important code. In the last section, you’ll tie everything together by creat-
ing a model of a hobbit and writing a function to hit it in a random spot.
Super! Important!

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

36 Chapter 3

As you move through the chapter, I recommend that you type the
examples in a REPL and run them. Programming in a new language is a
skill, and just like yodeling or synchronized swimming, you have to practice
to learn it. By the way, Synchronized Swimming for Yodelers for the Brave and True
will be published in August of 20never. Keep an eye out for it!

Syntax
Clojure’s syntax is simple. Like all Lisps, it employs a uniform structure, a
handful of special operators, and a constant supply of parentheses delivered
from the parenthesis mines hidden beneath the Massachusetts Institute of
Technology, where Lisp was born.

Forms
All Clojure code is written in a uniform structure. Clojure recognizes two
kinds of structures:

•	 Literal representations of data structures (like numbers, strings, maps,
and vectors)

•	 Operations

We use the term form to refer to valid code. I’ll also sometimes use
expression to refer to Clojure forms. But don’t get too hung up on the termi-
nology. Clojure evaluates every form to produce a value. These literal repre-
sentations are all valid forms:

1
"a string"
["a" "vector" "of" "strings"]

Your code will rarely contain free-floating literals, of course, because
they don’t actually do anything on their own. Instead, you’ll use literals in
operations. Operations are how you do things. All operations take the form
opening parenthesis, operator, operands, closing parenthesis:

(operator operand1 operand2 ... operandn)

Notice that there are no commas. Clojure uses whitespace to separate
operands, and it treats commas as whitespace. Here are some example
operations:

(+ 1 2 3)
; => 6

(str "It was the panda " "in the library " "with a dust buster")
; => "It was the panda in the library with a dust buster"

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 37

In the first operation, the operator + adds the operands 1, 2, and 3. In
the second operation, the operator str concatenates three strings to form a
new string. Both are valid forms. Here’s
something that is not a form because it
doesn’t have a closing parenthesis:

(+

Clojure’s structural uniformity is
probably different from what you’re
used to. In other languages, different
operations might have different struc-
tures depending on the operator and
the operands. For example, JavaScript
employs a smorgasbord of infix nota-
tion, dot operators, and parentheses:

1 + 2 + 3
"It was the panda ".concat("in the library ", "with a dust buster")

Clojure’s structure is very simple and consistent by comparison. No
matter which operator you’re using or what kind of data you’re operating
on, the structure is the same.

Control Flow
Let’s look at three basic control flow operators: if, do, and when. Throughout
the book you’ll encounter more, but these will get you started.

if

This is the general structure for an if expression:

(if boolean-form
 then-form
 optional-else-form)

A Boolean form is just a form that evaluates to a truthy or falsey value.
You’ll learn about truthiness and falsiness in the next section. Here are a
couple of if examples:

(if true
 "By Zeus's hammer!"
 "By Aquaman's trident!")
; => "By Zeus's hammer!"

(if false
 "By Zeus's hammer!"
 "By Aquaman's trident!")
; => "By Aquaman's trident!"

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

38 Chapter 3

The first example returns "By Zeus's hammer!" because the Boolean
form evaluates to true, a truthy value, and the second example returns "By
Aquaman's trident!" because its Boolean form, false, evaluates to a falsey value.

You can also omit the else branch. If you do that and the Boolean
expression is false, Clojure returns nil, like this:

(if false
 "By Odin's Elbow!")
; => nil

Notice that if uses operand position to associate operands with the then
and else branches: the first operand is the then branch, and the second
operand is the (optional) else branch. As a result, each branch can have
only one form. This is different from most languages. For example, you can
write this in Ruby:

if true
 doer.do_thing(1)
 doer.do_thing(2)
else
 other_doer.do_thing(1)
 other_doer.do_thing(2)
end

To get around this apparent limitation, you can use the do operator.

do

The do operator lets you wrap up multiple forms in parentheses and run
each of them. Try the following in your REPL:

(if true
 (do (println "Success!")
 "By Zeus's hammer!")
 (do (println "Failure!")
 "By Aquaman's trident!"))
; => Success!
; => "By Zeus's hammer!"

This operator lets you do multiple things in each of the if expression’s
branches. In this case, two things happen: Success! is printed in the REPL,
and "By Zeus's hammer!" is returned as the value of the entire if expression.

when

The when operator is like a combination of if and do, but with no else branch.
Here’s an example:

(when true
 (println "Success!")
 "abra cadabra")

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 39

; => Success!
; => "abra cadabra"

Use when if you want to do multiple things when some condition is true,
and you always want to return nil when the condition is false.

nil, true, false, Truthiness, Equality, and Boolean Expressions

Clojure has true and false values. nil is used to indicate no value in Clojure.
You can check if a value is nil with the appropriately named nil? function:

(nil? 1)
; => false

(nil? nil)
; => true

Both nil and false are used to represent logical falsiness, whereas all
other values are logically truthy. Truthy and falsey refer to how a value is
treated in a Boolean expression, like the first expression passed to if:

(if "bears eat beets"
 "bears beets Battlestar Galactica")
; => "bears beets Battlestar Galactica"

(if nil
 "This won't be the result because nil is falsey"
 "nil is falsey")
; => "nil is falsey"

In the first example, the string "bears eat beets" is considered truthy, so
the if expression evaluates to "bears beets Battlestar Galactica". The second
example shows a falsey value as falsey.

Clojure’s equality operator is =:

(= 1 1)
; => true

(= nil nil)
; => true

(= 1 2)
; => false

Some other languages require you to use different operators when com-
paring values of different types. For example, you might have to use some
kind of special string equality operator made just for strings. But you don’t
need anything weird or tedious like that to test for equality when using
Clojure’s built-in data structures.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

40 Chapter 3

Clojure uses the Boolean operators or and and. or returns either the first
truthy value or the last value. and returns the first falsey value or, if no values
are falsey, the last truthy value. Let’s look at or first:

(or false nil :large_I_mean_venti :why_cant_I_just_say_large)
; => :large_I_mean_venti

(or (= 0 1) (= "yes" "no"))
; => false

(or nil)
; => nil

In the first example, the return value is :large_I_mean_venti because
it’s the first truthy value. The second example has no truthy values, so or
returns the last value, which is false. In the last example, once again no
truthy values exist, and or returns the last value, which is nil. Now let’s look
at and:

(and :free_wifi :hot_coffee)
; => :hot_coffee

(and :feelin_super_cool nil false)
; => nil

In the first example, and returns the last truthy value, :hot_coffee. In the
second example, and returns nil, which is the first falsey value.

Naming Values with def
You use def to bind a name to a value in Clojure:

(def failed-protagonist-names
 ["Larry Potter" "Doreen the Explorer" "The Incredible Bulk"])

failed-protagonist-names
; => ["Larry Potter" "Doreen the Explorer" "The Incredible Bulk"]

In this case, you’re binding the
name failed-protagonist-names to
a vector containing three strings
(you’ll learn about vectors in
“Vectors” on page 45).

Notice that I’m using the term
bind, whereas in other languages you’d
say you’re assigning a value to a vari-
able. Those other languages typically
encourage you to perform multiple
assignments to the same variable.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 41

For example, in Ruby you might perform multiple assignments to a vari-
able to build up its value:

severity = :mild
error_message = "OH GOD! IT'S A DISASTER! WE'RE "
if severity == :mild
 error_message = error_message + "MILDLY INCONVENIENCED!"
else
 error_message = error_message + "DOOOOOOOMED!"
end

You might be tempted to do something similar in Clojure:

(def severity :mild)
(def error-message "OH GOD! IT'S A DISASTER! WE'RE ")
(if (= severity :mild)
 (def error-message (str error-message "MILDLY INCONVENIENCED!"))
 (def error-message (str error-message "DOOOOOOOMED!")))

However, changing the value associated with a name like this can make
it harder to understand your program’s behavior because it’s more difficult
to know which value is associated with a name or why that value might have
changed. Clojure has a set of tools for dealing with change, which you’ll
learn about in Chapter 10. As you learn Clojure, you’ll find that you’ll rarely
need to alter a name/value association. Here’s one way you could write the
preceding code:

(defn error-message
 [severity]
 (str "OH GOD! IT'S A DISASTER! WE'RE "
 (if (= severity :mild)
 "MILDLY INCONVENIENCED!"
 "DOOOOOOOMED!")))

(error-message :mild)
; => "OH GOD! IT'S A DISASTER! WE'RE MILDLY INCONVENIENCED!"

Here, you create a function, error-message, which accepts a single argu-
ment, severity, and uses that to determine which string to return. You then
call the function with :mild for the severity. You’ll learn all about creating
functions in “Functions” on page 48; in the meantime, you should treat
def as if it’s defining constants. In the next few chapters, you’ll learn how to
work with this apparent limitation by embracing the functional program-
ming paradigm.

Data Structures
Clojure comes with a handful of data structures that you’ll use the major-
ity of the time. If you’re coming from an object-oriented background,
you’ll be surprised at how much you can do with the seemingly basic types
presented here.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

42 Chapter 3

All of Clojure’s data structures are immutable, meaning you can’t
change them in place. For example, in Ruby you could do the following
to reassign the failed protagonist name at index 0:

failed_protagonist_names = [
 "Larry Potter",
 "Doreen the Explorer",
 "The Incredible Bulk"
]
failed_protagonist_names[0] = "Gary Potter"

failed_protagonist_names
=> [
"Gary Potter",
"Doreen the Explorer",
"The Incredible Bulk"
]

Clojure has no equivalent for this. You’ll learn more about why Clojure
was implemented this way in Chapter 10, but for now it’s fun to learn just
how to do things without all that philosophizing. Without further ado, let’s
look at numbers in Clojure.

Numbers
Clojure has pretty sophisticated numerical support. I won’t spend much
time dwelling on the boring technical details (like coercion and contagion),
because that will get in the way of doing things. If you’re interested in said
boring details, check out the documentation at http://clojure.org/data_
structures#Data%20Structures-Numbers. Suffice it to say, Clojure will merrily
handle pretty much anything you throw at it.

In the meantime, we’ll work with integers and floats. We’ll also work
with ratios, which Clojure can represent directly. Here’s an integer, a float,
and a ratio, respectively:

93
1.2
1/5

Strings
Strings represent text. The name comes from the ancient Phoenicians, who
one day invented the alphabet after an accident involving yarn. Here are
some examples of string literals:

"Lord Voldemort"
"\"He who must not be named\""
"\"Great cow of Moscow!\" - Hermes Conrad"

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

http://clojure.org/data_structures#Data%20Structures-Numbers
http://clojure.org/data_structures#Data%20Structures-Numbers

Do Things: A Clojure Crash Course 43

Notice that Clojure only allows double
quotes to delineate strings. 'Lord Voldemort',
for example, is not a valid string. Also notice
that Clojure doesn’t have string interpola-
tion. It only allows concatenation via the str
function:

(def name "Chewbacca")
(str "\"Uggllglglglglglglglll\" - " name)
; => "Uggllglglglglglglglll" - Chewbacca

Maps
Maps are similar to dictionaries or hashes in other languages. They’re a way
of associating some value with some other value. The two kinds of maps in
Clojure are hash maps and sorted maps. I’ll only cover the more basic hash
maps. Let’s look at some examples of map literals. Here’s an empty map:

{}

In this example, :first-name and :last-name are keywords (I’ll cover
those in the next section):

{:first-name "Charlie"
 :last-name "McFishwich"}

Here we associate "string-key" with the + function:

{"string-key" +}

Maps can be nested:

{:name {:first "John" :middle "Jacob" :last "Jingleheimerschmidt"}}

Notice that map values can be of any type—strings, numbers, maps,
vectors, even functions. Clojure don’t care!

Besides using map literals, you can use the hash-map function to create
a map:

(hash-map :a 1 :b 2)
; => {:a 1 :b 2}

You can look up values in maps with the get function:

(get {:a 0 :b 1} :b)
; => 1

(get {:a 0 :b {:c "ho hum"}} :b)
; => {:c "ho hum"}

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

44 Chapter 3

In both of these examples, we asked get for the value of the :b key
in the given map—in the first case it returns 1, and in the second case it
returns the nested map {:c "ho hum"}.

get will return nil if it doesn’t find your key, or you can give it a default
value to return, such as "unicorns?":

(get {:a 0 :b 1} :c)
; => nil

(get {:a 0 :b 1} :c "unicorns?")
; => "unicorns?"

The get-in function lets you look up values in nested maps:

(get-in {:a 0 :b {:c "ho hum"}} [:b :c])
; => "ho hum"

Another way to look up a value in a map is to treat the map like a func-
tion with the key as its argument:

({:name "The Human Coffeepot"} :name)
; => "The Human Coffeepot"

Another cool thing you can do with maps is use keywords as functions
to look up their values, which leads to the next subject, keywords.

Keywords
Clojure keywords are best understood by seeing how they’re used. They’re
primarily used as keys in maps, as you saw in the preceding section. Here
are some more examples of keywords:

:a
:rumplestiltsken
:34
:_?

Keywords can be used as functions that look up the corresponding
value in a data structure. For example, you can look up :a in a map:

(:a {:a 1 :b 2 :c 3})
; => 1

This is equivalent to:

(get {:a 1 :b 2 :c 3} :a)
; => 1

You can provide a default value, as with get:

(:d {:a 1 :b 2 :c 3} "No gnome knows homes like Noah knows")
; => "No gnome knows homes like Noah knows"

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 45

Using a keyword as a function is pleasantly succinct, and Real Clojurists
do it all the time. You should do it too!

Vectors
A vector is similar to an array, in that it’s a 0-indexed collection. For example,
here’s a vector literal:

[3 2 1]

Here we’re returning the 0th element of a vector:

(get [3 2 1] 0)
; => 3

Here’s another example of getting by index:

(get ["a" {:name "Pugsley Winterbottom"} "c"] 1)
; => {:name "Pugsley Winterbottom"}

You can see that vector elements can be of any type, and you can mix
types. Also notice that we’re using the same get function as we use when
looking up values in maps.

You can create vectors with the vector function:

(vector "creepy" "full" "moon")
; => ["creepy" "full" "moon"]

You can use the conj function to add additional elements to the vector.
Elements are added to the end of a vector:

(conj [1 2 3] 4)
; => [1 2 3 4]

Vectors aren’t the only way to store sequences; Clojure also has lists.

Lists
Lists are similar to vectors in that they’re linear collections of values. But
there are some differences. For example, you can’t retrieve list elements
with get. To write a list literal, just insert the elements into parentheses and
use a single quote at the beginning:

'(1 2 3 4)
; => (1 2 3 4)

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

46 Chapter 3

Notice that when the REPL prints out the list, it doesn’t include the
single quote. We’ll come back to why that happens later, in Chapter 7. If
you want to retrieve an element from a list, you can use the nth function:

(nth '(:a :b :c) 0)
; => :a

(nth '(:a :b :c) 2)
; => :c

I don’t cover performance in detail in this book because I don’t think
it’s useful to focus on it until after you’ve become familiar with a language.
However, it’s good to know that using nth to retrieve an element from a list
is slower than using get to retrieve an element from a vector. This is because
Clojure has to traverse all n elements of a list to get to the nth, whereas it
only takes a few hops at most to access a vector element by its index.

List values can have any type, and you can create lists with the list
function:

(list 1 "two" {3 4})
; => (1 "two" {3 4})

Elements are added to the beginning of a list:

(conj '(1 2 3) 4)
; => (4 1 2 3)

When should you use a list and when should you use a vector? A good
rule of thumb is that if you need to easily add items to the beginning of a
sequence or if you’re writing a macro, you should use a list. Otherwise, you
should use a vector. As you learn more, you’ll get a good feel for when to
use which.

Sets
Sets are collections of unique values. Clojure has two kinds of sets: hash
sets and sorted sets. I’ll focus on hash sets because they’re used more often.
Here’s the literal notation for a hash set:

#{"kurt vonnegut" 20 :icicle}

You can also use hash-set to create a set:

(hash-set 1 1 2 2)
; => #{1 2}

Note that multiple instances of a value become one unique value in
the set, so we’re left with a single 1 and a single 2. If you try to add a value

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 47

to a set that already contains that value (such as :b in the following code),
it will still have only one of that value:

(conj #{:a :b} :b)
; => #{:a :b}

You can also create sets from existing vectors and lists by using the set
function:

(set [3 3 3 4 4])
; => #{3 4}

You can check for set membership using the contains? function, by
using get, or by using a keyword as a function with the set as its argument.
contains? returns true or false, whereas get and keyword lookup will return
the value if it exists, or nil if it doesn’t.

Here’s how you’d use contains?:

(contains? #{:a :b} :a)
; => true

(contains? #{:a :b} 3)
; => false

(contains? #{nil} nil)
; => true

Here’s how you’d use a keyword:

(:a #{:a :b})
; => :a

And here’s how you’d use get:

(get #{:a :b} :a)
; => :a

(get #{:a nil} nil)
; => nil

(get #{:a :b} "kurt vonnegut")
; => nil

Notice that using get to test whether a set contains nil will always return
nil, which is confusing. contains? may be the better option when you’re test-
ing specifically for set membership.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

48 Chapter 3

Simplicity
You may have noticed that the treatment of data structures so far doesn’t
include a description of how to create new types or classes. The reason is
that Clojure’s emphasis on simplicity encourages you to reach for the built-
in data structures first.

If you come from an object-oriented background, you might think that
this approach is weird and backward. However, what you’ll find is that your
data does not have to be tightly bundled with a class for it to be useful and
intelligible. Here’s an epigram loved by Clojurists that hints at the Clojure
philosophy:

It is better to have 100 functions operate on one data structure
than 10 functions on 10 data structures.
—Alan Perlis

You’ll learn more about this aspect of Clojure’s philosophy in the
coming chapters. For now, keep an eye out for the ways that you gain code
reusability by sticking to basic data structures.

This concludes our Clojure data structures primer. Now it’s time to dig
in to functions and learn how to use these data structures!

Functions
One of the reasons people go nuts over Lisps is that these languages let
you build programs that behave in complex ways, yet the primary building
block—the function—is so simple. This section initiates you into the beauty
and elegance of Lisp functions by explaining the following:

•	 Calling functions

•	 How functions differ from macros and special forms

•	 Defining functions

•	 Anonymous functions

•	 Returning functions

Calling Functions
By now you’ve seen many examples of function calls:

(+ 1 2 3 4)
(* 1 2 3 4)
(first [1 2 3 4])

Remember that all Clojure operations have the same syntax: opening
parenthesis, operator, operands, closing parenthesis. Function call is just
another term for an operation where the operator is a function or a func-
tion expression (an expression that returns a function).

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 49

This lets you write some pretty interesting code. Here’s a function
expression that returns the + (addition) function:

(or + -)
; => #<core$_PLUS_ clojure.core$_PLUS_@76dace31>

That return value is the string representation of the addition func-
tion. Because the return value of or is the first truthy value, and here the
addition function is truthy, the addition function is returned. You can
also use this expression as the operator in another expression:

((or + -) 1 2 3)
; => 6

Because (or + -) returns +, this expression evaluates to the sum of 1, 2,
and 3, returning 6.

Here are a couple more valid function calls that each return 6:

((and (= 1 1) +) 1 2 3)
; => 6

((first [+ 0]) 1 2 3)
; => 6

In the first example, the return value of and is the first falsey value or
the last truthy value. In this case, + is returned because it’s the last truthy
value, and is then applied to the arguments 1 2 3, returning 6. In the sec-
ond example, the return value of first is the first element in a sequence,
which is + in this case.

However, these aren’t valid function calls, because numbers and strings
aren’t functions:

(1 2 3 4)
("test" 1 2 3)

If you run these in your REPL, you’ll get something like this:

ClassCastException java.lang.String cannot be cast to clojure.lang.IFn
user/eval728 (NO_SOURCE_FILE:1)

You’re likely to see this error many times as you continue with Clojure:
<x> cannot be cast to clojure.lang.IFn just means that you’re trying to use some-
thing as a function when it’s not.

Function flexibility doesn’t end with the function expression! Syntac-
tically, functions can take any expressions as arguments—including other
functions. Functions that can either take a function as an argument or
return a function are called higher-order functions. Programming languages
with higher-order functions are said to support first-class functions because
you can treat functions as values in the same way you treat more familiar
data types like numbers and vectors.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

50 Chapter 3

Take the map function (not to be confused with the map data structure),
for instance. map creates a new list by applying a function to each member of
a collection. Here, the inc function increments a number by 1:

(inc 1.1)
; => 2.1

(map inc [0 1 2 3])
; => (1 2 3 4)

(Note that map doesn’t return a vector, even though we supplied a vector
as an argument. You’ll learn why in Chapter 4. For now, just trust that this is
okay and expected.)

Clojure’s support for first-class functions allows you to build more
powerful abstractions than you can in languages without them. Those
unfamiliar with this kind of programming think of functions as allowing
you to generalize operations over data instances. For example, the + func-
tion abstracts addition over any specific numbers.

By contrast, Clojure (and all Lisps) allows you to create functions
that generalize over processes. map allows you to generalize the process of
transforming a collection by applying a function—any function—over any
collection.

The last detail that you need know about function calls is that Clojure
evaluates all function arguments recursively before passing them to the
function. Here’s how Clojure would evaluate a function call whose argu-
ments are also function calls:

(+ (inc 199) (/ 100 (- 7 2)))
(+ 200 (/ 100 (- 7 2))) ; evaluated "(inc 199)"
(+ 200 (/ 100 5)) ; evaluated (- 7 2)
(+ 200 20) ; evaluated (/ 100 5)
220 ; final evaluation

The function call kicks off the evaluation process, and all subforms are
evaluated before applying the + function.

Function Calls, Macro Calls, and Special Forms
In the previous section, you learned that function calls are expressions that
have a function expression as the operator. The two other kinds of expres-
sions are macro calls and special forms. You’ve already seen a couple of special
forms: definitions and if expressions.

You’ll learn everything there is to know about macro calls and special
forms in Chapter 7. For now, the main feature that makes special forms
“special” is that, unlike function calls, they don’t always evaluate all of their
operands.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 51

Take if, for example. This is its general structure:

(if boolean-form
 then-form
 optional-else-form)

Now imagine you had an if statement like this:

(if good-mood
 (tweet walking-on-sunshine-lyrics)
 (tweet mopey-country-song-lyrics))

Clearly, in an if expression like this, we want Clojure to evaluate only
one of the two branches. If Clojure evaluated both tweet function calls, your
Twitter followers would end up very confused.

Another feature that differentiates special forms is that you can’t use
them as arguments to functions. In general, special forms implement core
Clojure functionality that just can’t be implemented with functions. Clojure
has only a handful of special forms, and it’s pretty amazing that such a rich
language is implemented with such a small set of building blocks.

Macros are similar to special forms in that they evaluate their operands
differently from function calls, and they also can’t be passed as arguments
to functions. But this detour has taken long enough; it’s time to learn
how to define functions!

Defining Functions
Function definitions are composed of five main parts:

•	 defn

•	 Function name

•	 A docstring describing the function (optional)

•	 Parameters listed in brackets

•	 Function body

Here’s an example of a function definition and a sample call of the
function:

u (defn too-enthusiastic
v "Return a cheer that might be a bit too enthusiastic"
w [name]
x (str "OH. MY. GOD! " name " YOU ARE MOST DEFINITELY LIKE THE BEST "

 "MAN SLASH WOMAN EVER I LOVE YOU AND WE SHOULD RUN AWAY SOMEWHERE"))

(too-enthusiastic "Zelda")
; => "OH. MY. GOD! Zelda YOU ARE MOST DEFINITELY LIKE THE BEST MAN SLASH WOMAN
EVER I LOVE YOU AND WE SHOULD RUN AWAY SOMEWHERE"

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

52 Chapter 3

At u, too-enthusiastic is the name of the function, and it’s followed by
a descriptive docstring at v. The parameter, name, is given at w, and the
function body at x takes the parameter and does what it says on the tin—
returns a cheer that might be a bit too enthusiastic.

Let’s dive deeper into the docstring, parameters, and function body.

The Docstring

The docstring is a useful way to describe and document your code. You
can view the docstring for a function in the REPL with (doc fn-name)—for
example, (doc map). The docstring also comes into play if you use a tool to
generate documentation for your code.

Parameters and Arity

Clojure functions can be defined with zero or more parameters. The values
you pass to functions are called arguments, and the arguments can be of any
type. The number of parameters is the function’s arity. Here are some func-
tion definitions with different arities:

(defn no-params
 []
 "I take no parameters!")
(defn one-param
 [x]
 (str "I take one parameter: " x))
(defn two-params
 [x y]
 (str "Two parameters! That's nothing! Pah! I will smoosh them "
 "together to spite you! " x y))

In these examples, no-params is a 0-arity function, one-param is 1-arity, and
two-params is 2-arity.

Functions also support arity overloading. This means that you can define
a function so a different function body will run depending on the arity.
Here’s the general form of a multiple-arity function definition. Notice that
each arity definition is enclosed in parentheses and has an argument list:

(defn multi-arity
 ;; 3-arity arguments and body
 ([first-arg second-arg third-arg]
 (do-things first-arg second-arg third-arg))
 ;; 2-arity arguments and body
 ([first-arg second-arg]
 (do-things first-arg second-arg))
 ;; 1-arity arguments and body
 ([first-arg]
 (do-things first-arg)))

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 53

Arity overloading is one way to provide default values for arguments.
In the following example, "karate" is the default argument for the chop-type
parameter:

(defn x-chop
 "Describe the kind of chop you're inflicting on someone"
 ([name chop-type]
 (str "I " chop-type " chop " name "! Take that!"))
 ([name]
 (x-chop name "karate")))

If you call x-chop with two arguments, the function works just as it would
if it weren’t a multiple-arity function:

(x-chop "Kanye West" "slap")
; => "I slap chop Kanye West! Take that!"

If you call x-chop with only one argument, x-chop will
actually call itself with the second argument "karate"
supplied:

(x-chop "Kanye East")
; => "I karate chop Kanye East! Take that!"

It might seem unusual to define a
function in terms of itself like this.
If so, great! You’re learning a new
way to do things!

You can also make each
arity do something completely
unrelated:

(defn weird-arity
 ([]
 "Destiny dressed you this morning, my friend, and now Fear is
 trying to pull off your pants. If you give up, if you give in,
 you're gonna end up naked with Fear just standing there laughing
 at your dangling unmentionables! - the Tick")
 ([number]
 (inc number)))

The 0-arity body returns a wise quote, and the 1-arity body increments
a number. Most likely, you wouldn’t want to write a function like this,
because it would be confusing to have two function bodies that are com-
pletely unrelated.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

54 Chapter 3

Clojure also allows you to define variable-arity functions by including a
rest parameter, as in “put the rest of these arguments in a list with the following
name.” The rest parameter is indicated by an ampersand (&), as shown at u:

(defn codger-communication
 [whippersnapper]
 (str "Get off my lawn, " whippersnapper "!!!"))

(defn codger
u [& whippersnappers]

 (map codger-communication whippersnappers))

(codger "Billy" "Anne-Marie" "The Incredible Bulk")
; => ("Get off my lawn, Billy!!!"
 "Get off my lawn, Anne-Marie!!!"
 "Get off my lawn, The Incredible Bulk!!!")

As you can see, when you provide arguments to variable-arity functions,
the arguments are treated as a list. You can mix rest parameters with nor-
mal parameters, but the rest parameter has to come last:

(defn favorite-things
 [name & things]
 (str "Hi, " name ", here are my favorite things: "
 (clojure.string/join ", " things)))

(favorite-things "Doreen" "gum" "shoes" "kara-te")
; => "Hi, Doreen, here are my favorite things: gum, shoes, kara-te"

Finally, Clojure has a more sophisticated way of defining parameters,
called destructuring, which deserves its own subsection.

Destructuring

The basic idea behind destructuring is that it lets you concisely bind names
to values within a collection. Let’s look at a basic example:

;; Return the first element of a collection
(defn my-first
 [[first-thing]] ; Notice that first-thing is within a vector
 first-thing)

(my-first ["oven" "bike" "war-axe"])
; => "oven"

Here, the my-first function associates the symbol first-thing with
the first element of the vector that was passed in as an argument. You tell
my-first to do this by placing the symbol first-thing within a vector.

That vector is like a huge sign held up to Clojure that says, “Hey! This
function is going to receive a list or a vector as an argument. Make my life
easier by taking apart the argument’s structure for me and associating

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 55

meaningful names with different parts of the argument!” When destruc-
turing a vector or list, you can name as many elements as you want and
also use rest parameters:

(defn chooser
 [[first-choice second-choice & unimportant-choices]]
 (println (str "Your first choice is: " first-choice))
 (println (str "Your second choice is: " second-choice))
 (println (str "We're ignoring the rest of your choices. "
 "Here they are in case you need to cry over them: "
 (clojure.string/join ", " unimportant-choices))))

(chooser ["Marmalade", "Handsome Jack", "Pigpen", "Aquaman"])
; => Your first choice is: Marmalade
; => Your second choice is: Handsome Jack
; => We're ignoring the rest of your choices. Here they are in case \
 you need to cry over them: Pigpen, Aquaman

Here, the rest parameter unimportant-choices handles any number of
additional choices from the user after the first and second.

You can also destructure maps. In the same way that you tell Clojure
to destructure a vector or list by providing a vector as a parameter, you
destructure maps by providing a map as a parameter:

(defn announce-treasure-location
u [{lat :lat lng :lng}]

 (println (str "Treasure lat: " lat))
 (println (str "Treasure lng: " lng)))

(announce-treasure-location {:lat 28.22 :lng 81.33})
; => Treasure lat: 100
; => Treasure lng: 50

Let’s look at the line at u in more detail. This is like telling Clojure,
“Yo! Clojure! Do me a flava and associate the name lat with the value corre-
sponding to the key :lat. Do the same thing with lng and :lng, okay?”

We often want to just break keywords out of a map, so there’s a shorter
syntax for that. This has the same result as the previous example:

(defn announce-treasure-location
 [{:keys [lat lng]}]
 (println (str "Treasure lat: " lat))
 (println (str "Treasure lng: " lng)))

You can retain access to the original map argument by using the :as
keyword. In the following example, the original map is accessed with
treasure-location:

(defn receive-treasure-location
 [{:keys [lat lng] :as treasure-location}]

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

56 Chapter 3

 (println (str "Treasure lat: " lat))
 (println (str "Treasure lng: " lng))

 ;; One would assume that this would put in new coordinates for your ship
 (steer-ship! treasure-location))

In general, you can think of destructuring as instructing Clojure on
how to associate names with values in a list, map, set, or vector. Now, on to
the part of the function that actually does something: the function body!

Function Body

The function body can contain forms of any kind. Clojure automatically
returns the last form evaluated. This function body contains just three
forms, and when you call the function, it spits out the last form, "joe":

(defn illustrative-function
 []
 (+ 1 304)
 30
 "joe")

(illustrative-function)
; => "joe"

Here’s another function body, which uses an if expression:

(defn number-comment
 [x]
 (if (> x 6)
 "Oh my gosh! What a big number!"
 "That number's OK, I guess"))

(number-comment 5)
; => "That number's OK, I guess"

(number-comment 7)
; => "Oh my gosh! What a big number!"

All Functions Are Created Equal

One final note: Clojure has no privileged functions. + is just a function, - is
just a function, and inc and map are just functions. They’re no better than
the functions you define yourself. So don’t let them give you any lip!

More important, this fact helps demonstrate Clojure’s underlying
simplicity. In a way, Clojure is very dumb. When you make a function call,
Clojure just says, “map? Sure, whatever! I’ll just apply this and move on.” It
doesn’t care what the function is or where it came from; it treats all func-
tions the same. At its core, Clojure doesn’t give two burger flips about addi-
tion, multiplication, or mapping. It just cares about applying functions.

As you continue to program with Clojure, you’ll see that this simplicity
is ideal. You don’t have to worry about special rules or syntax for working
with different functions. They all work the same!

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 57

Anonymous Functions
In Clojure, functions don’t need to have names. In fact, you’ll use anony-
mous functions all the time. How mysterious! You create anonymous func-
tions in two ways. The first is to use the fn form:

(fn [param-list]
 function body)

Looks a lot like defn, doesn’t it? Let’s try a couple of examples:

(map (fn [name] (str "Hi, " name))
 ["Darth Vader" "Mr. Magoo"])
; => ("Hi, Darth Vader" "Hi, Mr. Magoo")

((fn [x] (* x 3)) 8)
; => 24

You can treat fn nearly identically to the way you treat defn. The param-
eter lists and function bodies work exactly the same. You can use argument
destructuring, rest parameters, and so on. You could even associate your
anonymous function with a name, which shouldn’t come as a surprise (if
that does come as a surprise, then . . . Surprise!):

(def my-special-multiplier (fn [x] (* x 3)))
(my-special-multiplier 12)
; => 36

Clojure also offers another, more compact way to create anonymous
functions. Here’s what an anonymous function looks like:

#(* % 3)

Whoa, that looks weird. Go ahead and apply that weird-looking
function:

(#(* % 3) 8)
; => 24

Here’s an example of passing an anonymous function as an argument
to map:

(map #(str "Hi, " %)
 ["Darth Vader" "Mr. Magoo"])
; => ("Hi, Darth Vader" "Hi, Mr. Magoo")

This strange-looking style of writing anonymous functions is made
possible by a feature called reader macros. You’ll learn all about those in
Chapter 7. Right now, it’s okay to learn how to use just these anonymous
functions.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

58 Chapter 3

You can see that this syntax is definitely more compact, but it’s also a
little odd. Let’s break it down. This kind of anonymous function looks a lot
like a function call, except that it’s preceded by a hash mark, #:

;; Function call
(* 8 3)

;; Anonymous function
#(* % 3)

This similarity allows you to more quickly see what will happen when
this anonymous function is applied. “Oh,” you can say to yourself, “this is
going to multiply its argument by three.”

As you may have guessed by now, the percent sign, %, indicates the argu-
ment passed to the function. If your anonymous function takes multiple
arguments, you can distinguish them like this: %1, %2, %3, and so on. % is
equivalent to %1:

(#(str %1 " and " %2) "cornbread" "butter beans")
; => "cornbread and butter beans"

You can also pass a rest parameter with %&:

(#(identity %&) 1 "blarg" :yip)
; => (1 "blarg" :yip)

In this case, you applied the identity function to the rest argument.
Identity returns the argument it’s given without altering it. Rest argu-
ments are stored as lists, so the function application returns a list of all
the arguments.

If you need to write a simple anonymous function, using this style is
best because it’s visually compact. On the other hand, it can easily become
unreadable if you’re writing a longer, more complex function. If that’s the
case, use fn.

Returning Functions
By now you’ve seen that functions can return other functions. The returned
functions are closures, which means that they can access all the variables that
were in scope when the function was created. Here’s a standard example:

(defn inc-maker
 "Create a custom incrementor"
 [inc-by]
 #(+ % inc-by))

(def inc3 (inc-maker 3))

(inc3 7)
; => 10

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 59

Here, inc-by is in scope, so the returned function has access to it even
when the returned function is used outside inc-maker.

Pulling It All Together
Okay! It's time to use your newfound knowledge
for a noble purpose: smacking around hobbits!
To hit a hobbit, you’ll first model its body parts.
Each body part will include its relative size to
indicate how likely it is that that part will be
hit. To avoid repetition, the hobbit model will
include only entries for left foot, left ear, and so on.
Therefore, you’ll need a function to fully symme-
trize the model, creating right foot, right ear, and
so forth. Finally, you’ll create a function that iter-
ates over the body parts and randomly chooses
the one hit. Along the way, you’ll learn about a
few new Clojure tools: let expressions, loops, and
regular expressions. Fun!

The Shire’s Next Top Model
For our hobbit model, we’ll eschew such hobbit
characteristics as joviality and mischievousness
and focus only on the hobbit’s tiny body. Here’s
the hobbit model:

(def asym-hobbit-body-parts [{:name "head" :size 3}
 {:name "left-eye" :size 1}
 {:name "left-ear" :size 1}
 {:name "mouth" :size 1}
 {:name "nose" :size 1}
 {:name "neck" :size 2}
 {:name "left-shoulder" :size 3}
 {:name "left-upper-arm" :size 3}
 {:name "chest" :size 10}
 {:name "back" :size 10}
 {:name "left-forearm" :size 3}
 {:name "abdomen" :size 6}
 {:name "left-kidney" :size 1}
 {:name "left-hand" :size 2}
 {:name "left-knee" :size 2}
 {:name "left-thigh" :size 4}
 {:name "left-lower-leg" :size 3}
 {:name "left-achilles" :size 1}
 {:name "left-foot" :size 2}])

This is a vector of maps. Each map has the name of the body part and
relative size of the body part. (I know that only anime characters have eyes
one-third the size of their head, but just go with it, okay?)

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

60 Chapter 3

Conspicuously missing is the hobbit’s right side. Let’s fix that. Listing 3-1
is the most complex code you’ve seen so far, and it introduces some new
ideas. But don’t worry, because we’ll examine it in great detail.

(defn matching-part
 [part]
 {:name (clojure.string/replace (:name part) #"^left-" "right-")
 :size (:size part)})

(defn symmetrize-body-parts
 "Expects a seq of maps that have a :name and :size"
 [asym-body-parts]
 (loop [remaining-asym-parts asym-body-parts
 final-body-parts []]
 (if (empty? remaining-asym-parts)
 final-body-parts
 (let [[part & remaining] remaining-asym-parts]
 (recur remaining
 (into final-body-parts
 (set [part (matching-part part)])))))))

Listing 3-1: The matching-part and symmetrize-body-parts functions

When we call the function symmetrize-body-parts on asym-hobbit-body-parts,
we get a fully symmetrical hobbit:

(symmetrize-body-parts asym-hobbit-body-parts)
; => [{:name "head", :size 3}
 {:name "left-eye", :size 1}
 {:name "right-eye", :size 1}
 {:name "left-ear", :size 1}
 {:name "right-ear", :size 1}
 {:name "mouth", :size 1}
 {:name "nose", :size 1}
 {:name "neck", :size 2}
 {:name "left-shoulder", :size 3}
 {:name "right-shoulder", :size 3}
 {:name "left-upper-arm", :size 3}
 {:name "right-upper-arm", :size 3}
 {:name "chest", :size 10}
 {:name "back", :size 10}
 {:name "left-forearm", :size 3}
 {:name "right-forearm", :size 3}
 {:name "abdomen", :size 6}
 {:name "left-kidney", :size 1}
 {:name "right-kidney", :size 1}
 {:name "left-hand", :size 2}
 {:name "right-hand", :size 2}
 {:name "left-knee", :size 2}
 {:name "right-knee", :size 2}
 {:name "left-thigh", :size 4}
 {:name "right-thigh", :size 4}
 {:name "left-lower-leg", :size 3}
 {:name "right-lower-leg", :size 3}

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 61

 {:name "left-achilles", :size 1}
 {:name "right-achilles", :size 1}
 {:name "left-foot", :size 2}
 {:name "right-foot", :size 2}]

Let’s break down this code!

let
In the mass of craziness in Listing 3-1, you can see a form of the structure
(let ...). Let’s build up an understanding of let one example at a time, and
then examine the full example from the program once we’re familiar with
all the pieces.

let binds names to values. You can think of let as short for let it be,
which is also a beautiful Beatles song about programming. Here’s an
example:

(let [x 3]
 x)
; => 3

(def dalmatian-list
 ["Pongo" "Perdita" "Puppy 1" "Puppy 2"])
(let [dalmatians (take 2 dalmatian-list)]
 dalmatians)
; => ("Pongo" "Perdita")

In the first example, you bind the name x to the value 3. In the sec-
ond, you bind the name dalmatians to the result of the expression (take 2
dalmatian-list), which was the list ("Pongo" "Perdita"). let also introduces a
new scope :

(def x 0)
(let [x 1] x)
; => 1

Here, you first bind the name x to the value 0 using def. Then, let
creates a new scope in which the name x is bound to the value 1. I think
of scope as the context for what something refers to. For example, in the
phrase “please clean up these butts,” butts means something different
depending on whether you’re working in a maternity ward or on the cus-
todial staff of a cigarette manufacturers convention. In this code snippet,
you’re saying, “I want x to be 0 in the global context, but within the context
of this let expression, it should be 1.”

You can reference existing bindings in your let binding:

(def x 0)
(let [x (inc x)] x)
; => 1

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

62 Chapter 3

In this example, the x in (inc x) refers to the binding created by (def
x 0). The resulting value is 1, which is then bound to the name x within a
new scope created by let. Within the confines of the let form, x refers to 1,
not 0.

You can also use rest parameters in let, just like you can in functions:

(let [[pongo & dalmatians] dalmatian-list]
 [pongo dalmatians])
; => ["Pongo" ("Perdita" "Puppy 1" "Puppy 2")]

Notice that the value of a let form is the last form in its body that
is evaluated. let forms follow all the destructuring rules introduced in
“Calling Functions” on page 48. In this case, [pongo & dalmatians] destruc-
tured dalmatian-list, binding the string "Pongo" to the name pongo and the
list of the rest of the dalmatians to dalmatians. The vector [pongo dalmatians]
is the last expression in let, so it’s the value of the let form.

let forms have two main uses. First, they provide clarity by allowing you
to name things. Second, they allow you to evaluate an expression only once
and reuse the result. This is especially important when you need to reuse
the result of an expensive function call, like a network API call. It’s also
important when the expression has side effects.

Let’s have another look at the let form in our symmetrizing function so
we can understand exactly what’s going on:

(let [[part & remaining] remaining-asym-parts]
 (recur remaining
 (into final-body-parts
 (set [part (matching-part part)]))))

This code tells Clojure, “Create a new scope. Within it, associate part
with the first element of remaining-asym-parts. Associate remaining with the
rest of the elements in remaining-asym-parts.”

As for the body of the let expression, you’ll learn about the meaning of
recur in the next section. The function call

(into final-body-parts
 (set [part (matching-part part)]))

first tells Clojure, “Use the set function to create a set consisting of part and
its matching part. Then use the function into to add the elements of that set
to the vector final-body-parts.” You create a set here to ensure you’re adding
unique elements to final-body-parts because part and (matching-part part)
are sometimes the same thing, as you’ll see in the upcoming section on
regular expressions. Here’s a simplified example:

(into [] (set [:a :a]))
; => [:a]

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 63

First, (set [:a :a]) returns the set #{:a}, because sets don’t contain
duplicate elements. Then (into [] #{:a}) returns the vector [:a].

Back to let: notice that part is used multiple times in the body of the
let. If we used the original expressions instead of using the names part and
remaining, it would be a mess! Here’s an example:

(recur (rest remaining-asym-parts)
 (into final-body-parts
 (set [(first remaining-asym-parts) (matching-part (first
remaining-asym-parts))])))

So, let is a handy way to introduce local names for values, which helps
simplify the code.

loop
In our symmetrize-body-parts function we use loop, which provides another
way to do recursion in Clojure. Let’s look at a simple example:

(loop [iteration 0]
 (println (str "Iteration " iteration))
 (if (> iteration 3)
 (println "Goodbye!")
 (recur (inc iteration))))
; => Iteration 0
; => Iteration 1
; => Iteration 2
; => Iteration 3
; => Iteration 4
; => Goodbye!

The first line, loop [iteration 0], begins the loop and introduces a bind-
ing with an initial value. On the first pass through the loop, iteration has
a value of 0. Next, it prints a short message. Then, it checks the value of
iteration. If the value is greater than 3, it’s time to say Goodbye. Otherwise,
we recur. It’s as if loop creates an anonymous function with a parameter
named iteration, and recur allows you to call the function from within
itself, passing the argument (inc iteration).

You could in fact accomplish the same thing by just using a normal
function definition:

(defn recursive-printer
 ([]
 (recursive-printer 0))
 ([iteration]
 (println iteration)
 (if (> iteration 3)
 (println "Goodbye!")
 (recursive-printer (inc iteration)))))
(recursive-printer)

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

64 Chapter 3

; => Iteration 0
; => Iteration 1
; => Iteration 2
; => Iteration 3
; => Iteration 4
; => Goodbye!

But as you can see, this is a bit more verbose. Also, loop has much better
performance. In our symmetrizing function, we’ll use loop to go through
each element in the asymmetrical list of body parts.

Regular Expressions
Regular expressions are tools for performing pattern matching on text. The
literal notation for a regular expression is to place the expression in quotes
after a hash mark:

#"regular-expression"

In the function matching-part in Listing 3-1, clojure.string/replace uses
the regular expression #"^left-" to match strings starting with "left-" in
order to replace "left-" with "right-". The carat, ^, is how the regular
expression signals that it will match the text "left-" only if it’s at the begin-
ning of the string, which ensures that something like "cleft-chin" won’t
match. You can test this with re-find, which checks whether a string matches
the pattern described by a regular expression, returning the matched text
or nil if there is no match:

(re-find #"^left-" "left-eye")
; => "left-"

(re-find #"^left-" "cleft-chin")
; => nil

(re-find #"^left-" "wongleblart")
; => nil

Here are a couple of examples of matching-part using a regex to replace
"left-" with "right-":

(defn matching-part
 [part]
 {:name (clojure.string/replace (:name part) #"^left-" "right-")
 :size (:size part)})
(matching-part {:name "left-eye" :size 1})
; => {:name "right-eye" :size 1}]

(matching-part {:name "head" :size 3})
; => {:name "head" :size 3}]

Notice that the name "head" is returned as is.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 65

Symmetrizer
Now let’s go back to the full symmetrizer and analyze it in more detail:

(def asym-hobbit-body-parts [{:name "head" :size 3}
 {:name "left-eye" :size 1}
 {:name "left-ear" :size 1}
 {:name "mouth" :size 1}
 {:name "nose" :size 1}
 {:name "neck" :size 2}
 {:name "left-shoulder" :size 3}
 {:name "left-upper-arm" :size 3}
 {:name "chest" :size 10}
 {:name "back" :size 10}
 {:name "left-forearm" :size 3}
 {:name "abdomen" :size 6}
 {:name "left-kidney" :size 1}
 {:name "left-hand" :size 2}
 {:name "left-knee" :size 2}
 {:name "left-thigh" :size 4}
 {:name "left-lower-leg" :size 3}
 {:name "left-achilles" :size 1}
 {:name "left-foot" :size 2}])

(defn matching-part
 [part]
 {:name (clojure.string/replace (:name part) #"^left-" "right-")
 :size (:size part)})

u (defn symmetrize-body-parts
 "Expects a seq of maps that have a :name and :size"
 [asym-body-parts]

v (loop [remaining-asym-parts asym-body-parts
 final-body-parts []]

w (if (empty? remaining-asym-parts)
 final-body-parts

x (let [[part & remaining] remaining-asym-parts]
y (recur remaining

 (into final-body-parts
 (set [part (matching-part part)])))))))

The symmetrize-body-parts function (starting at u) employs a general
strategy that is common in functional programming. Given a sequence (in
this case, a vector of body parts and their sizes), the function continuously
splits the sequence into a head and a tail. Then it processes the head, adds it
to some result, and uses recursion to continue the process with the tail.

We begin looping over the body parts at v. The tail of the sequence will
be bound to remaining-asym-parts. Initially, it’s bound to the full sequence
passed to the function: asym-body-parts. We also create a result sequence,
final-body-parts; its initial value is an empty vector.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

66 Chapter 3

If remaining-asym-parts is empty at w, that means we’ve processed the
entire sequence and can return the result, final-body-parts. Otherwise, at x
we split the list into a head, part, and tail, remaining.

At y, we recur with remaining, a list that gets shorter by one element on
each iteration of the loop, and the (into) expression, which builds our vec-
tor of symmetrized body parts.

If you’re new to this kind of programming, this code might take some
time to puzzle out. Stick with it! Once you understand what’s happening,
you’ll feel like a million bucks!

Better Symmetrizer with reduce
The pattern of process each element in a sequence and build a result is so com-
mon that there’s a built-in function for it called reduce. Here’s a simple
example:

;; sum with reduce
(reduce + [1 2 3 4])
; => 10

This is like telling Clojure to do this:

(+ (+ (+ 1 2) 3) 4)

The reduce function works according to the following steps:

1.	 Apply the given function to the first two elements of a sequence. That’s
where (+ 1 2) comes from.

2.	 Apply the given function to the result and the next element of the
sequence. In this case, the result of step 1 is 3, and the next element
of the sequence is 3 as well. So the final result is (+ 3 3).

3.	 Repeat step 2 for every remaining element in the sequence.

reduce also takes an optional initial value. The initial value here is 15:

(reduce + 15 [1 2 3 4])

If you provide an initial value, reduce starts by applying the given func-
tion to the initial value and the first element of the sequence rather than
the first two elements of the sequence.

One detail to note is that, in these examples, reduce takes a collection
of elements, [1 2 3 4], and returns a single number. Although program-
mers often use reduce this way, you can also use reduce to return an even
larger collection than the one you started with, as we’re trying to do
with symmetrize-body-parts. reduce abstracts the task “process a collection

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 67

and build a result,” which is agnostic about the type of result returned.
To further understand how reduce works, here’s one way that you could
implement it:

(defn my-reduce
 ([f initial coll]
 (loop [result initial
 remaining coll]
 (if (empty? remaining)
 result
 (recur (f result (first remaining)) (rest remaining)))))
 ([f [head & tail]]
 (my-reduce f head tail)))

We could reimplement our symmetrizer as follows:

(defn better-symmetrize-body-parts
 "Expects a seq of maps that have a :name and :size"
 [asym-body-parts]
 (reduce (fn [final-body-parts part]
 (into final-body-parts (set [part (matching-part part)])))
 []
 asym-body-parts))

Groovy! One immediately obvious advantage of using reduce is that you
write less code overall. The anonymous function you pass to reduce focuses
only on processing an element and building a result. The reason is that reduce
handles the lower-level machinery of keeping track of which elements have
been processed and deciding whether to return a final result or to recur.

Using reduce is also more expressive. If readers of your code encounter
loop, they won’t be sure exactly what the loop is doing without reading all of
the code. But if they see reduce, they’ll immediately know that the purpose
of the code is to process the elements of a collection to build a result.

Finally, by abstracting the reduce process into a function that takes
another function as an argument, your program becomes more compos-
able. You can pass the reduce function as an argument to other functions,
for example. You could also create a more generic version of symmetrize-body
-parts, say, expand-body-parts. This could take an expander function in addition
to a list of body parts and would let you model more than just hobbits. For
example, you could have a spider expander that could multiply the numbers
of eyes and legs. I’ll leave it up to you to write that because I am evil.

Hobbit Violence
My word, this is truly Clojure for the Brave and True! To put the capstone on
your work, here’s a function that determines which part of a hobbit is hit:

(defn hit
 [asym-body-parts]

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

68 Chapter 3

 (let [sym-parts (ubetter-symmetrize-body-parts asym-body-parts)
 vbody-part-size-sum (reduce + (map :size sym-parts))
 target (rand body-part-size-sum)]
 w(loop [[part & remaining] sym-parts
 accumulated-size (:size part)]
 (if (> accumulated-size target)
 part
 (recur remaining (+ accumulated-size (:size (first remaining))))))))

hit works by taking a vector of asymmetrical body parts, symmetriz-
ing it at u, and then summing the sizes of the parts at v. Once we sum the
sizes, it’s like each number from 1 through body-part-size-sum corresponds
to a body part; 1 might correspond to the left eye, and 2, 3, 4 might corre-
spond to the head. This makes it so when you hit a body part (by choosing a
random number in this range), the likelihood that a particular body part is
hit will depend on the size of the body part.

Finally, one of these numbers is randomly chosen, and then we use loop
at w to find and return the body part that corresponds to the number. The
loop does this by keeping track of the accumulated sizes of parts that we’ve
checked and checking whether the accumulated size is greater than the tar-
get. I visualize this process as lining up the body parts with a row of num-
bered slots. After I line up a body part, I ask myself, “Have I reached the
target yet?” If I have, that means the body part I
just lined up was the one hit. Otherwise, I just
keep lining up those parts.

For example, say that your list of parts is
head, left eye, and left hand, like in Figure 3-1.
After taking the first part, the head, the accu-
mulated size is 3. The body part is hit if the
accumulated size is greater than the target, so
if the target is 0, 1, or 2, then the head was hit.
Otherwise, you take the next part, the left eye,
and increase the accumulated size to 4, yielding
a hit if the target is 3. Similarly, the left hand
gets hit if the target is 4 or 5.

Here are some sample runs of the hit
function:

(hit asym-hobbit-body-parts)
; => {:name "right-upper-arm", :size 3}

(hit asym-hobbit-body-parts)
; => {:name "chest", :size 10}

(hit asym-hobbit-body-parts)
; => {:name "left-eye", :size 1}

Oh my god, that poor hobbit! You monster!

Head
Left
eye

Left
hand

1 2 3 4 5 6

Figure 3-1: Body parts
correspond to ranges
of numbers and get hit
if the target falls within
that range.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

Do Things: A Clojure Crash Course 69

Summary
This chapter gave you a whirlwind tour of how to do stuff in Clojure. You
now know how to represent information using strings, numbers, maps, key-
words, vectors, lists, and sets, and how to name these representations with
def and let. You’ve learned about how flexible functions are and how to
create your own functions. Also, you’ve been introduced to Clojure’s philos-
ophy of simplicity, including its uniform syntax and its emphasis on using
large libraries of functions on primitive data types.

Chapter 4 will take you through a detailed examination of Clojure’s
core functions, and Chapter 5 explains the functional programming mind-
set. This chapter has shown you how to write Clojure code—the next two
will show you how to write Clojure well.

At this point I recommend, with every fiber of my being, that you start
writing code. There is no better way to solidify your Clojure knowledge.
The Clojure Cheat Sheet (http://clojure.org/cheatsheet/) is a great reference
that lists all the built-in functions that operate on the data structures cov-
ered in this chapter.

The following exercises will really tickle your brain. If you’d like to test
your new skills even more, try some Project Euler challenges at http://www
.projecteuler.net/. You could also check out 4Clojure (http://www.4clojure.com/
problems/), an online set of Clojure problems designed to test your knowl-
edge. Just write something!

Exercises
These exercises are meant to be a fun way to test your Clojure knowledge
and to learn more Clojure functions. The first three can be completed
using only the information presented in this chapter, but the last three will
require you to use functions that haven’t been covered so far. Tackle the last
three if you’re really itching to write more code and explore Clojure’s stan-
dard library. If you find the exercises too difficult, revisit them after read-
ing Chapters 4 and 5—you’ll find them much easier.

1.	 Use the str, vector, list, hash-map, and hash-set functions.

2.	 Write a function that takes a number and adds 100 to it.

3.	 Write a function, dec-maker, that works exactly like the function inc-maker
except with subtraction:

(def dec9 (dec-maker 9))
(dec9 10)
; => 1

4.	 Write a function, mapset, that works like map except the return value is
a set:

(mapset inc [1 1 2 2])
; => #{2 3}

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

http://clojure.org/cheatsheet/
http://www .projecteuler.net/
http://www .projecteuler.net/
http://www.4clojure.com/problems/
http://www.4clojure.com/problems/

70 Chapter 3

5.	 Create a function that’s similar to symmetrize-body-parts except that it
has to work with weird space aliens with radial symmetry. Instead of
two eyes, arms, legs, and so on, they have five.

6.	 Create a function that generalizes symmetrize-body-parts and the func-
tion you created in Exercise 5. The new function should take a col-
lection of body parts and the number of matching body parts to add.
If you’re completely new to Lisp languages and functional program-
ming, it probably won’t be obvious how to do this. If you get stuck, just
move on to the next chapter and revisit the problem later.

Clojure for the Brave and True
© 2015 by Daniel Higginbotham

